본문 바로가기

딥러닝

[패스트캠퍼스 수강 후기] 인공지능강의 100% 환급 챌린지 57회차 미션

인공지능강의

PART 5) 딥러닝 최신 트렌드

43. Ch 04. 자연어처리 (Natural Language Processing) - 15. 응용하기 좋은 데이터셋 소개

데이터셋의 중요성

아무리 잘 짜여진 딥러닝 알고리즘도, '지식'이 없으면 무용지물이다. 그 '지식'은 데이터셋으로 부터 나온다.

 

데이터셋 창고

https://github.com/niderhoff/nlp-datasets

 

niderhoff/nlp-datasets

Alphabetical list of free/public domain datasets with text data for use in Natural Language Processing (NLP) - niderhoff/nlp-datasets

github.com

https://machinelearningmastery.com/datasets-natural-language-processing/

 

Datasets for Natural Language Processing

You need datasets to practice on when getting started with deep learning for natural language processing tasks. It is better to use small datasets that you can download quickly and do not take too long to fit models. Further, it is also helpful to use stan

machinelearningmastery.com

CoNLL Shared Task

https://www.conll.org/2019-shared-task

 

CoNLL Shared Task 2019: Call for Proposals | CoNLL

SIGNLL (ACL's Special Interest Group on Natural Language Learning) invites proposals for the CoNLL Shared Task 2019. Background Since 1999, CoNLL (the Conference on Computational Natural Language Learning) has included a shared task in which training an

www.conll.org

Stanford Large Movie Review Dataset

http://ai.stanford.edu/~amaas/data/sentiment/

 

Sentiment Analysis

Publications Using the Dataset Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the Association for Computational Linguistics (A

ai.stanford.edu

KorQuAD2.0(2.1)

https://korquad.github.io/

 

KorQuAD

What is KorQuAD 2.0? KorQuAD 2.0은 KorQuAD 1.0에서 질문답변 20,000+ 쌍을 포함하여 총 100,000+ 쌍으로 구성된 한국어 Machine Reading Comprehension 데이터셋 입니다. KorQuAD 1.0과는 다르게 1~2 문단이 아닌 Wikipedia artic

korquad.github.io

Naver Sentiment Movie Corpus

https://github.com/e9t/nsmc

 

e9t/nsmc

Naver sentiment movie corpus. Contribute to e9t/nsmc development by creating an account on GitHub.

github.com

44. Ch 04. 자연어처리 (Natural Language Processing) - 16. 관련 대회 소개

Kaggle

https://www.kaggle.com/competitions

 

Kaggle Competitions

 

www.kaggle.com

Codalab

https://competitions.codalab.org/competitions/

 

CodaLab - Competitions

We have scheduled a important maintenance operation for the Codalab public instance (http://competitions.codalab.org) for Saturday, September 8th. The migration will start at approximately 9AM PST and should hopefully be completed by approximately 1PM PST

competitions.codalab.org

GLUE : GLUE의 리더보드에서는 다양한 최신 연구를 실시간으로 확일할 수 있다.

https://gluebenchmark.com/

 

GLUE Benchmark

The General Language Understanding Evaluation (GLUE) benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems

gluebenchmark.com

SuperGLUE : 아직 많은 연구가 수행되지 않았음.

https://super.gluebenchmark.com/

 

SuperGLUE Benchmark

SuperGLUE is a new benchmark styled after original GLUE benchmark with a set of more difficult language understanding tasks, improved resources, and a new public leaderboard.

super.gluebenchmark.com

https://bit.ly/3g72Rmm

 

딥러닝/인공지능 올인원 패키지 Online. | 패스트캠퍼스

Tensorflow2.0부터 Pytorch까지 딥러닝 대표 프레임워크를 정복하기. 생활 깊숙이 침투한 인공지능, 그 중심엔 딥러닝이 있습니다. 가장 강력한 머신러닝의 툴로서 주목받는 딥러닝은 생각보다 어려��

www.fastcampus.co.kr